Show simple item record

dc.contributor.authorMartínez de la Fuente Martínez, Ildefonso Abel
dc.contributor.authorVadillo Arroyo, Fernando
dc.contributor.authorPérez Pinilla, Martín Blas ORCID
dc.contributor.authorVera López, Antonio
dc.contributor.authorVeguillas Losada, Juan Emilio
dc.date.accessioned2011-06-07T17:22:16Z
dc.date.available2011-06-07T17:22:16Z
dc.date.issued2009-10-19
dc.identifier.citationPLoS ONE 4(10) : (2009) // e7510es
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10810/2763
dc.description11 p.es
dc.description.abstractBackground: Different studies show evidence that several unicellular organisms display a cellular metabolic structure characterized by a set of enzymes which are always in an active state (metabolic core), while the rest of the molecular catalytic reactions exhibit on-off changing states. This self-organized enzymatic configuration seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. In a recent analysis performed with dissipative metabolic networks (DMNs) we have shown that this global functional structure emerges in metabolic networks with a relatively high number of catalytic elements, under particular conditions of enzymatic covalent regulatory activity. Methodology/Principal Findings: Here, to investigate the mechanism behind the emergence of this supramolecular organization of enzymes, we have performed extensive DMNs simulations (around 15,210,000 networks) taking into account the proportion of the allosterically regulated enzymes and covalent enzymes present in the networks, the variation in the number of substrate fluxes and regulatory signals per catalytic element, as well as the random selection of the catalytic elements that receive substrate fluxes from the exterior. The numerical approximations obtained show that the percentages of DMNs with metabolic cores grow with the number of catalytic elements, converging to 100% for all cases. Conclusions/Significance: The results show evidence that the fundamental factor for the spontaneous emergence of this global self-organized enzymatic structure is the number of catalytic elements in the metabolic networks. Our analysis corroborates and expands on our previous studies illustrating a crucial property of the global structure of the cellular metabolism. These results also offer important insights into the mechanisms which ensure the robustness and stability of living cells.es
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science and Education Grants MTM2005-01504 and by the Basque Government grant GIC07/151-IT-254-07. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.es
dc.language.isoenges
dc.publisherPublic Library of Sciencees
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectpancreatic beta-celles
dc.subjecttobacco by-2 cellses
dc.subjectsaccharomyces-cerevisiaees
dc.subjectautonomous oscillationses
dc.subjectdissipative structureses
dc.subjectprotein complexeses
dc.subjectin-vivoes
dc.subjectcyclees
dc.subjectexpressiones
dc.subjectyeastes
dc.titleThe Number of Catalytic Elements Is Crucial for the Emergence of Metabolic Coreses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2009 De la Fuente et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.es
dc.relation.publisherversionhttp://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0007510es
dc.identifier.doi10.1371/journal.pone.0007510
dc.departamentoesQuímica físicaes_ES
dc.departamentoesMatemática Aplicada, Estadística e Investigación Operativaes_ES
dc.departamentoesMatemáticases_ES
dc.departamentoeuKimika fisikoaes_ES
dc.departamentoeuMatematika aplikatua eta estatistikaes_ES
dc.departamentoeuMatematikaes_ES
dc.subject.categoriaAGRICULTURAL AND BIOLOGICAL SCIENCES
dc.subject.categoriaMEDICINE
dc.subject.categoriaBIOCHEMISTRY AND MOLECULAR BIOLOGY


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record