Show simple item record

dc.contributor.advisorPitarke de la Torre, José María ORCID
dc.contributor.advisorVavassori, Paolo
dc.contributor.authorPancaldi, Matteo
dc.date.accessioned2018-09-26T10:44:38Z
dc.date.available2018-09-26T10:44:38Z
dc.date.issued2018-06-18
dc.date.submitted2018-06-18
dc.identifier.urihttp://hdl.handle.net/10810/28866
dc.description212 p.es_ES
dc.description.abstractLa tesis trata de nanoescructuras magnéticas, definidas por la disminución de sus tres dimensiones hasta cientos de nanómetros y formadas por materiales magnéticos. La introducción de interacciones en un conjunto de nanoestructuras magnéticas puede dar lugar a propiedades emergentes. Una de estas propiedades se conoce como frustración, es decir, la inhabilidad de un sistema físico de minimizar simultáneamente la energía de todas sus interacciones. En el año 2006, una nueva clase de metamateriales fue creada para estudiar sistemáticamente la frustración: los sistemas de hielo de espín artificial, que son básicamente un conjunto de nanoestructuras magnéticas en interacción. Para estudiar el efecto de la temperatura en estos sistemas, se ha desarrollado un esquema de simulación a multi-escala capaz de combinar simulaciones micromagnéticas estocásticas (cientos de nanómetros, decenas de microsegundos) con el método de Monte Carlo cinético al fin de considerar el comportamiento del sistema en su totalidad (decenas de micrómetros, cientos de segundos). Los resultados derivados de este método de simulación han sido comparados con datos de la literatura con el fin de verificar la validez de nuestra estrategia. Además de este esquema de simulación, nos basamos en nuestro conocimiento en magnetismo y plasmónica para idear una técnica no estándar de calentamiento de sistemas de hielo de espín artificiales: calentamiento termoplasmónico de nanoestructuras magnéticas. Trabajando con nanoestructuras alargadas de multicapa, se llegó a realizar una forma de calentamiento selectivo y local a través de la manipulación de un haz de luz con determinada longitud de onda. A pesar de no estar directamente relacionado con la frustración, pudimos demonstrar que la competición entre interacciones magnetostáticas también puede ser aprovechada para explorar el paisaje energético de nanoestructuras magnéticas, más allá de lo que se podría obtener con el solo uso de campos magnéticos homogéneos.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectmagnetismes_ES
dc.subjectmagnetic propertieses_ES
dc.subjectoptical propertieses_ES
dc.subjectmagnetismoes_ES
dc.subjectpropiedades ópticas de los sólidoses_ES
dc.subjectpropiedades magnéticas de los sólidoses_ES
dc.titleStudy of geometrical frustration and thermal activation in arrays of magnetic nanostructureses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.holder(cc)2018 MATTEO PANCALDI (cc by-nc-nd 4.0)
dc.identifier.studentID768611es_ES
dc.identifier.projectID19661es_ES
dc.departamentoesFísica de materialeses_ES
dc.departamentoeuMaterialen fisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España