Show simple item record

dc.contributor.authorBlanco, Pablo M
dc.contributor.authorVia Nadal, Mireia ORCID
dc.contributor.authorGarces, Josep Lluis
dc.contributor.authorMadurga, Sergio
dc.contributor.authorMas, Francesc
dc.date.accessioned2018-12-14T19:56:44Z
dc.date.available2018-12-14T19:56:44Z
dc.date.issued2017-03-09
dc.identifier.citationEntropy 19(3) : (2017) // Article ID 105es_ES
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/10810/30391
dc.description.abstractThe high concentration of macromolecules (i.e., macromolecular crowding) in cellular environments leads to large quantitative effects on the dynamic and equilibrium biological properties. These effects have been experimentally studied using inert macromolecules to mimic a realistic cellular medium. In this paper, two different experimental in vitro systems of diffusing proteins which use dextran macromolecules as obstacles are computationally analyzed. A new model for dextran macromolecules based on effective radii accounting for macromolecular compression induced by crowding is proposed. The obtained results for the diffusion coefficient and the anomalous diffusion exponent exhibit good qualitative and generally good quantitative agreement with experiments. Volume fraction and hydrodynamic interactions are found to be crucial to describe the diffusion coefficient decrease in crowded media. However, no significant influence of the hydrodynamic interactions in the anomalous diffusion exponent is found.es_ES
dc.description.sponsorshipWe acknowledge the financial support from: the Spanish Ministry of Science and Innovation (project CTM2012-39183 and CTM2016-78798-C2-1-P) and Generalitat de Catalunya (Grants 2014SGR1017, 2014SGR1132 and XrQTC). Sergio Madurga and Francesc Mas acknowledge the funding of the project 8SEWP-HORIZON 2020 (692146).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTM2012-39183es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTM2016-78798-C2-1-Pes_ES
dc.relationInfo:eu-repo/grantAgreement/EC/H2020/692146es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectmacromolecular crowdinges_ES
dc.subjectBrownian dynamicses_ES
dc.subjectdextran modellinges_ES
dc.subjectmacromolecule diffusiones_ES
dc.subjecthydrodynamic interactionses_ES
dc.titleBrownian Dynamics Computational Model of Protein Diffusion in Crowded Media with Dextran Macromolecules as Obstacleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.mdpi.com/1099-4300/19/3/105es_ES
dc.identifier.doi10.3390/e19030105
dc.contributor.funderEuropean Commission
dc.departamentoesCiencia y tecnología de polímeroses_ES
dc.departamentoeuPolimeroen zientzia eta teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).