dc.contributor.author | López Zorrilla, Asier  | |
dc.contributor.author | De Velasco Vázquez, Mikel  | |
dc.contributor.author | Torres Barañano, María Inés  | |
dc.date.accessioned | 2019-06-03T12:38:58Z | |
dc.date.available | 2019-06-03T12:38:58Z | |
dc.date.issued | 2019-04 | |
dc.identifier.citation | Increasing Naturalness and Flexibility in Spoken Dialogue Interaction. Lecture Notes in Electrical Engineering 714 : 277-289 (2021) | es_ES |
dc.identifier.uri | http://hdl.handle.net/10810/33071 | |
dc.description | Presentado antes de su publicación por Springer en el IWSDS 2019: International Workshop on Spoken Dialogue Systems Technology, Siracusa, Italy, April 24-26, 2019 | es_ES |
dc.description.abstract | This work presents a novel methodology to train open domain neural dialogue systems within the framework of Generative Adversarial Networks with gradient-based optimization methods. We avoid the non-differentiability related to text-generating networks approximating the word vector corresponding to each generated token via a top-k softmax. We show that a weighted average of the word vectors of the most probable tokens computed from the probabilities resulting of the top-k softmax leads to a good approximation of the word vector of the generated token. Finally we demonstrate through a human evaluation process that training a neural dialogue system via adversarial learning with this method successfully discourages it from producing generic responses. Instead it tends to produce more informative and variate ones. | es_ES |
dc.description.sponsorship | This work has been partially funded by the Basque Government under grant PRE_2017_1_0357, by the University of the Basque Country UPV/EHU under grant PIF17/310, and by the H2020 RIA EMPATHIC (Grant N: 769872). | es_ES |
dc.language.iso | eng | es_ES |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/769872 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | generative adversarial networks | es_ES |
dc.subject | open domain dialogue | es_ES |
dc.title | A Differentiable Generative Adversarial Network for Open Domain Dialogue | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.holder | (c) 2019 los autores | es_ES |
dc.identifier.doi | 10.1007/978-981-15-9323-9_24 | |
dc.contributor.funder | European Commission | |
dc.departamentoes | Electricidad y electrónica | es_ES |
dc.departamentoeu | Elektrizitatea eta elektronika | es_ES |