Show simple item record

dc.contributor.authorRodríguez Muguruza, Asier
dc.contributor.authorFernández de Luis, Roberto
dc.contributor.authorIglesias, Naroa
dc.contributor.authorBazán Blau, Begoña del Pilar ORCID
dc.contributor.authorUrtiaga Greaves, Miren Karmele ORCID
dc.contributor.authorSerrano Larrea, Edurne
dc.contributor.authorFidalgo Marijuan, Arkaitz
dc.contributor.authorBarandika Argoitia, Miren Gotzone ORCID
dc.date.accessioned2020-01-14T15:11:08Z
dc.date.available2020-01-14T15:11:08Z
dc.date.issued2020-04
dc.identifier.citationJournal of Inorganic Biochemistry 205 : (2020) // https://doi.org/10.1016/j.jinorgbio.2019.110977es_ES
dc.identifier.issn0162-0134
dc.identifier.issn1873-3344
dc.identifier.urihttp://hdl.handle.net/10810/38426
dc.description.abstractMetal-Organic Frameworks (MOFs) are porous coordination networks assembled through metal complexes with organic linkers. Due to their chemical versatility, these materials are being investigated for various applications including gas storage and separation, biomedicine and catalysis. The aim of this work is the encapsulation of the model β-alanine amino-acid in the nanostructured zirconium-based MOF (UiO-66) which contains the ligand H2BDC (1,4-benzenedicaboxylic acid). Additionally, ligand functionalization (by using H2doBDC (2,5-dihydroxy-1,4-benzenedicarboxylic acid) and defect engineering have been carried out to produce UiO-66 derivatives, in order to modify the host-guest interactions, and hence study their influence on the β-alanine loading capacity and release kinetics. The as-obtained materials have been characterized by X-ray diffraction (XRD), X-ray thermo diffraction (TDX), infrared (IR) spectroscopy, thermogravimetric analysis-differential scanning calorimetry (TG-DSC) and elemental analysis (EA). Morphology of nanoscale MOFs has been explored by transition electron microscopy (TEM). Adsorption isotherms have been constructed, and the concentration of β-alanine in the post-adsorption solution (supernatant) has been quantified by high performance liquid chromatography coupled with mass spectroscopy (HPLC-MS) and EA. Adsorption capacity values indicate that the presence of hydroxyl groups at the organic linker H2doBDC enhances the host-guess affinity between the framework and the adsorbate β-alanine. The influence of defect engineering, on the adsorption however, is not that obvious. On the other hand, desorption experiments show similar behaviour for H2doBDC-based derivatives. An adsortion mechanism has been proposed consisting of a combination of host-guest interaction at low concentrations, and covalent anchoring/ligand displacement by β-alanine at the inorganic clusters.es_ES
dc.description.sponsorshipMinisterio de Economía y Competitividad [MAT2016-76739-R (AEI/FEDER, UE)]; Universidad del País Vasco/ Euskal Herriko Unibertsitatea (GIU 18/197); Gobierno Vasco ELKARTEK-ACTIMAT, HAZITEK-SIMAN and PIBA-LIMOFILM (PIBA-2018-06).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2016-76739-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectdrug delivery systemses_ES
dc.subjectencapsulationes_ES
dc.subjectzirconium(IV)-based metal organic frameworkses_ES
dc.subjectdefect engineeringes_ES
dc.subjectβ-alaninees_ES
dc.subjecthost-guest interactionses_ES
dc.titleEncapsulation of β-alanine model amino-acid in zirconium(IV) metal organic frameworks: Defect engineering to improve host guest interactionses_ES
dc.typeinfo:eu-repo/semantics/preprintes_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0162013419304751es_ES
dc.identifier.doi10.1016/j.jinorgbio.2019.110977
dc.contributor.funderMinisterio de Economía y Competitividad
dc.contributor.funderGobierno Vasco
dc.contributor.funderUPV/EHU


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record