Mostrar el registro sencillo del ítem

dc.contributor.advisorLazkano Ortega, Elena
dc.contributor.advisorArganda Carreras, Ignacio
dc.contributor.authorAlkorta Zabaleta, Asier
dc.date.accessioned2020-10-14T11:36:55Z
dc.date.available2020-10-14T11:36:55Z
dc.date.issued2020-10-09
dc.identifier.urihttp://hdl.handle.net/10810/46886
dc.description.abstractThe system introduced in this work tries to solve the problem of melody classification. The proposed approach is based on extracting the spectrogram of the audio of each melody and then using deep supervised learning approaches to classify them into categories. As found out experimentally, the Transfer Learning technique is required alongside Data Augmentation in order to improve the accuracy of the system. The results shown in this thesis, focus further work on this field by providing insight on the performance of different tested Learning Models. Overall, DenseNets have proved themselves the best architectures o use in this context reaching a significant prediction accuracy.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.titleDevelopment of a deep learning system for hummed melody identification for BertsoBotes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.rights.holderAtribución-NoComercial-CompartirIgual 3.0 Españaes_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 3.0 España