Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments
View/ Open
Date
2020-08-18Author
Rujas Díez, Edurne
Insausti González, Sara
Leaman, Daniel P.
Carravilla Palomanes, Pablo
González Resines, Saul
Monceaux, Valérie
García Porras, Miguel
Iloro, Ibon
Zhang, Lei
Elortza, Felix
Julien, Jean Philippe
Sáez Cirión, Asier
Zwick, Michael B.
Eggeling, Christian
Ojida, Akio
Domene, Carmen
Caaveiro, Jose M.M.
Nieva Escandón, José Luis
Metadata
Show full item record
Cell Reports 32(7) : (2020) // Article ID 108037
Abstract
The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes.