Show simple item record

dc.contributor.authorCastilla, Sebastián
dc.contributor.authorVangelidis, Ioannis
dc.contributor.authorPusapati, Varun Varma
dc.contributor.authorGoldstein, Jordan
dc.contributor.authorAutore, Marta
dc.contributor.authorSlipchenko, Tetiana
dc.contributor.authorRajendran, Khannan
dc.contributor.authorKim, Seyoon
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorMartín Moreno, Luis
dc.contributor.authorEnglund, Dirk
dc.contributor.authorTielrooij, Klaas-Jan
dc.contributor.authorHillenbrand, Rainer
dc.contributor.authorLidorikis, Elefterios
dc.contributor.authorKoppens, Frank H. L.
dc.date.accessioned2021-02-22T09:19:47Z
dc.date.available2021-02-22T09:19:47Z
dc.date.issued2020-09-25
dc.identifier.citationNature Communications 11(1) : (2020) // Article ID 4872es_ES
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/10810/50252
dc.description.abstractIntegrating and manipulating the nano-optoelectronic properties of Van der Waals heterostructures can enable unprecedented platforms for photodetection and sensing. The main challenge of infrared photodetectors is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, we overcome all of those challenges in one device, by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-infrared light into a graphene pn-junction. We balance the interplay of the absorption, electrical and thermal conductivity of graphene via the device geometry. This approach yields remarkable device performance featuring room temperature high sensitivity (NEP of 82 pW/<mml:msqrt>Hz</mml:msqrt>) and fast rise time of 17 nanoseconds (setup-limited), among others, hence achieving a combination currently not present in the state-of-the-art graphene and commercial mid-infrared detectors. We also develop a multiphysics model that shows very good quantitative agreement with our experimental results and reveals the different contributions to our photoresponse, thus paving the way for further improvement of these types of photodetectors even beyond mid-infrared range. A significant challenge of infrared (IR) photodetectors is to funnel light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, the authors couple a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-IR light into a graphene pn-junction.es_ES
dc.description.sponsorshipThe authors thank David Alcaraz-Iranzo, Jianbo Yin, Iacopo Torre, Hitesh Agarwal, Bernat Terres and Ilya Goykmann for fruitful discussions. F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 785219 and no. 881603 Graphene Flagship for Core2 and Core3. ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). K.J.T. acknowledges funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 804349. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant No. IT1164-19). S.C. acknowledges financial support from the Barcelona Institute of Science and Technology (BIST), the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya and the European Social Fund (L'FSE inverteix en el teu futur)-FEDER. D.E. acknowledges partial support from the Army Research Office MURI "Ab-Initio Solid-State Quantum Materials" Grant No. W911NF18-1-0431. J.G. was supported by the ARL-MIT Institute for Soldier Nanotechnologies (ISN). T.S. and L.M.M. acknowledge support by Spain's MINECO under Grant No. MAT2017-88358-C3-1-R and the Aragon Government through project Q-MAD.es_ES
dc.language.isoenges_ES
dc.publisherNaturees_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/SEV-2015-0522es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/785219es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/881603es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/SEV-2017-0706es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/804349es_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RTI2018-094830-B-100es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/MDM-2016-0618es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2017-88358-C3-1-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectboron-nitridees_ES
dc.subjectphotoresponsees_ES
dc.subjectterahertzes_ES
dc.titlePlasmonic Antenna Coupling to Hyperbolic Phonon-Polaritons for Sensitive and fast Mid-Infrared Photodetection with Graphenees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41467-020-18544-zes_ES
dc.identifier.doi10.1038/s41467-020-18544-z
dc.contributor.funderEuropean Commission
dc.departamentoesFísica de materialeses_ES
dc.departamentoeuMaterialen fisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)