Abstract
In modern industry there are still a large number of low added-value processes that can be automated or semi-automated with safe cooperation between robot and human operators. The European SHERLOCK project aims to integrate an autonomous industrial mobile manipulator (AIMM) to perform cooperative tasks between a robot and a human. To be able to do this, AIMMs need to have a variety of advanced cognitive skills like autonomous navigation, smart perception and task management. In this paper, we report the project’s tackle in a paradigmatic industrial application combining accurate autonomous navigation with deep learning-based 3D perception for pose estimation to locate and manipulate different industrial objects in an unstructured environment. The proposed method presents a combination of different technologies fused in an AIMM that achieve the proposed objective with a success rate of 83.33% in tests carried out in a real environment.