Show simple item record

dc.contributor.authorXian, Lede
dc.contributor.authorFischer, Ammon
dc.contributor.authorClaassen, Martin
dc.contributor.authorZhang, Jin
dc.contributor.authorRubio Secades, Angel
dc.contributor.authorKennes, Dante M.
dc.date.accessioned2021-10-21T08:54:30Z
dc.date.available2021-10-21T08:54:30Z
dc.date.issued2021-09-22
dc.identifier.citationNano Letters 21(18) : 7519-7526 (2021)es_ES
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/10810/53507
dc.description.abstractTwisting two adjacent layers of van der Waals materials with respect to each other can lead to flat two-dimensional electronic bands which enables a wealth of physical phenomena. Here, we generalize this concept of so-called moire flat bands to engineer flat bands in all three spatial dimensions controlled by the twist angle. The basic concept is to stack the material such that the large spatial moire interference patterns are spatially shifted from one twisted layer to the next. We exemplify the general concept by considering graphitic systems, boron nitride, and WSe2, but the approach is applicable to any two-dimensional van der Waals material. For hexagonal boron nitride, we develop an ab initio fitted tight binding model that captures the corresponding three-dimensional low-energy electronic structure. We outline that interesting three-dimensional correlated phases of matter can be induced and controlled following this route, including quantum magnets and unconventional superconducting states.es_ES
dc.description.sponsorshipThis work is supported by the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT124919), and SFB925. A.R. is supported by the Flatiron Institute, a division of the Simons Foundation. We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 1995 within the Priority Program SPP 2244 2DMP under Germany's Excellence Strategy -Cluster of Excellence and Advanced Imaging of Matter (AIM) EXC 2056-390715994 and RTG 2247. L.X. acknowledges the support from Distinguished Junior Fellowship program by the South Bay Interdisciplinary Science Center in the Songshan Lake Materials Laboratory. J.Z. acknowledges funding received from the European Union Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement 886291 (PeSD-NeSL).es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/694097es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/886291es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjecttwisted moiré materialses_ES
dc.subjectflat bandses_ES
dc.subjectstrongly correlated electronses_ES
dc.subjectsuperconductivityes_ES
dc.subjectAb Initio calculationses_ES
dc.subjectmagic-anglees_ES
dc.subjectsuperconductivityes_ES
dc.subjectinsulatores_ES
dc.subjectphysicses_ES
dc.subjectstateses_ES
dc.subjectmottes_ES
dc.titleEngineering Three-Dimensional Moire Flat Bandses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs-acs-org.ehu.idm.oclc.org/doi/10.1021/acs.nanolett.1c01684es_ES
dc.identifier.doi10.1021/acs.nanolett.1c01684
dc.contributor.funderEuropean Commission
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0)
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0)