Show simple item record

dc.contributor.authorPlou, Javier
dc.contributor.authorMolina Martínez, Beatriz
dc.contributor.authorGarcía Astrain, Clara
dc.contributor.authorLanger, Judith
dc.contributor.authorGarcía, Isabel
dc.contributor.authorErcilla, Amaia
dc.contributor.authorPerumal, Govindaraj
dc.contributor.authorCarracedo Pérez, Arkaitz ORCID
dc.contributor.authorLiz Marzán, Luis Manuel
dc.date.accessioned2021-11-18T08:44:05Z
dc.date.available2021-11-18T08:44:05Z
dc.date.issued2021-10-27
dc.identifier.citationNano Letters 21(20) : 8785-8793 (2021)es_ES
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/10810/53804
dc.description.abstract[EN]Monitoring dynamic processes in complex cellular environments requires the integration of uniformly distributed detectors within such three-dimensional (3D) networks, to an extent that the sensor could provide real-time information on nearby perturbations in a non-invasive manner. In this context, the development of 3D-printed structures that can function as both sensors and cell culture platforms emerges as a promising strategy, not only for mimicking a specific cell niche but also toward identifying its characteristic physicochemical conditions, such as concentration gradients. We present herein a 3D cancer model that incorporates a hydrogel-based scaffold containing gold nanorods. In addition to sustaining cell growth, the printed nanocomposite inks display the ability to uncover drug diffusion profiles by surface-enhanced Raman scattering, with high spatiotemporal resolution. We additionally demonstrate that the acquired information could pave the way to designing novel strategies for drug discovery in cancer therapy, through correlation of drug diffusion with cell death.es_ES
dc.description.sponsorshipJ.P. acknowledges an FPU fellowship from the Spanish Ministry of Science, Innovation and Universities. L.M.L.-M. acknowledges funding from the European Research Council (Grants ERC AdG 787510, 4DbioSERS) and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant MDM-2017-0720). A.C. was funded by MICINN (Grant PID2019-108787RB-I00 (FEDER/EU)) and the European Research Council (ERC Consolidator Grant 819242).es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/787510es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/819242es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-108787RB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectsurface-enhanced Raman spectroscopyes_ES
dc.subjectSERSes_ES
dc.subjectnanocomposite scaffoldes_ES
dc.subject3D cell culturees_ES
dc.subjectdrug diffusiones_ES
dc.titleNanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-Dimensional Cell Environments by Surface-Enhanced Raman Spectroscopyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2021 The Authors. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c03070es_ES
dc.identifier.doi10.1021/acs.nanolett.1c03070
dc.contributor.funderEuropean Commission
dc.departamentoesBioquímica y biología moleculares_ES
dc.departamentoesQuímica aplicadaes_ES
dc.departamentoeuBiokimika eta biologia molekularraes_ES
dc.departamentoeuKimika aplikatuaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2021 The Authors. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as © 2021 The Authors. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)