Show simple item record

dc.contributor.authorFernández Gauna, Borja
dc.contributor.authorGraña Romay, Manuel María
dc.contributor.authorOsa Amilibia, Juan Luis ORCID
dc.contributor.authorLarrucea Uriarte, Xabier
dc.date.accessioned2022-04-08T08:22:35Z
dc.date.available2022-04-08T08:22:35Z
dc.date.issued2022-04
dc.identifier.citationInformation Sciences 591 : 365-380 (2022)es_ES
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.urihttp://hdl.handle.net/10810/56238
dc.description.abstract[EN] The control of Variable-Speed Wind-Turbines (VSWT) extracting electrical power from the wind kinetic energy are composed of subsystems that need to be controlled jointly, namely the blade pitch and the generator torque controllers. Previous state of the art approaches decompose the joint control problem into independent control subproblems, each with its own control subgoal, carrying out separately the design and tuning of a parameterized controller for each subproblem. Such approaches neglect interactions among subsystems which can introduce significant effects. This paper applies Actor-Critic Reinforcement Learning (ACRL) for the joint control problem as a whole, carrying out the simultaneous control parameter optimization of both subsystems without neglecting their interactions, aiming for a globally optimal control of the whole system. The innovative control architecture uses an augmented input space so that the parameters can be fine-tuned for each working condition. Validation results conducted on simulation experiments using the state-of-the-art OpenFAST simulator show a significant efficiency improvement relative to the best state of the art controllers used as benchmarks, up to a 22% improvement in the average power error performance after ACRL training.es_ES
dc.description.sponsorshipThis work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P, MCIN project PID2020-116346 GB-I00, and project KK-202000044 of the Elkartek 2020 funding program of the Basque Government.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/TIN2017-85827-Pes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2020-116346 GB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectvarying speed wind turbine controles_ES
dc.subjectactor critic reinforcement learninges_ES
dc.titleActor-critic continuous state reinforcement learning for wind-turbine control robust optimizationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder(c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0020025522000767?via%3Dihubes_ES
dc.identifier.doi10.1016/j.ins.2022.01.047
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoesIngeniería mecánicaes_ES
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES
dc.departamentoeuIngeniaritza mekanikoaes_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

(c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).