Show simple item record

dc.contributor.authorKiese, Dominik
dc.contributor.authorHe, Yuchi
dc.contributor.authorHickey, Ciaran
dc.contributor.authorRubio Secades, Angel
dc.contributor.authorKennes, Dante M.
dc.date.accessioned2022-05-17T08:59:23Z
dc.date.available2022-05-17T08:59:23Z
dc.date.issued2022
dc.identifier.citationAPL Materials 10(3) : (2022) // Article ID 031113es_ES
dc.identifier.issn2166-532X
dc.identifier.urihttp://hdl.handle.net/10810/56564
dc.description.abstract[EN] The advent of twisted moire heterostructures as a playground for strongly correlated electron physics has led to a plethora of experimental and theoretical efforts seeking to unravel the nature of the emergent superconducting and insulating states. Among these layered compositions of two-dimensional materials, transition metal dichalcogenides are now appreciated as highly tunable platforms to simulate reinforced electronic interactions in the presence of low-energy bands with almost negligible bandwidth. Here, we focus on the twisted homobilayer WSe2 and the insulating phase at half-filling of the flat bands reported therein. More specifically, we explore the possibility of realizing quantum spin liquid (QSL) physics on the basis of a strong coupling description, including up to second-nearest neighbor Heisenberg couplings J(1) and J(2) as well as Dzyaloshinskii-Moriya (DM) interactions. Mapping out the global phase diagram as a function of an out-of-plane displacement field, we indeed find evidence for putative QSL states, albeit only close to SU(2) symmetric points. In the presence of finite DM couplings and XXZ anisotropy, long-range order is predominantly present with a mix of both commensurate and incommensurate magnetic phases.es_ES
dc.description.sponsorshipWe thank M. Claassen, M. M. Scherer, and Zhenyue Zhu for useful discussions. D.K. thanks L. Gresista and T. Muller for related work on the PFFRGSolver.jl package74 used for the FRG calculations. The DMRG calculations are based on the Tenpy package.75 D.K. and C.H. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project No. 277146847, SFB 1238 (Project No. C03). Y.H. and D.M.K. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant No. RTG 1995 within the Priority Program SPP 2244 "2DMP" and within Germany's Excellence Strategy-Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) Grant No. EXC 2004/1-390534769. This work was supported by the Max Planck-New York City Center for Nonequilibrium Quantum Phenomena. The numerical simulations were performed on the CHEOPS cluster at RRZK Cologne, the JURECA Booster76 and JUWELS cluster77 at the Forschungszentrum Juelich, and the Raven cluster at MPCDF of the Max Planck society.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectmagic-anglees_ES
dc.subjectcorrelated stateses_ES
dc.subjectmoire bandses_ES
dc.subjectsuperconductivityes_ES
dc.subjectinsulatores_ES
dc.subjectbehaviores_ES
dc.subjectphasees_ES
dc.subjectmodeles_ES
dc.subjectmottes_ES
dc.titleTMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://aip.scitation.org/doi/10.1063/5.0077901es_ES
dc.identifier.doi10.1063/5.0077901
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).