Show simple item record

dc.contributor.authorZubiaga Amar, Irune
dc.contributor.authorJusto Blanco, Raquel ORCID
dc.date.accessioned2023-01-24T15:59:44Z
dc.date.available2023-01-24T15:59:44Z
dc.date.issued2022-04-26
dc.identifier.citationPattern Recognition and Image Analysis. IbPRIA 2022 // Lecture Notes in Computer Science 13256 : (2022)es_ES
dc.identifier.isbn978-3-031-04880-7
dc.identifier.urihttp://hdl.handle.net/10810/59447
dc.description.abstractMental health is a global issue that plays an important roll in the overall well-being of a person. Because of this, it is important to preserve it, and conversational systems have proven to be helpful in this task. This research is framed in the MENHIR project, which aims at developing a conversational system for emotional well-being monitorization. As a first step for achieving this purpose, the goal of this paper is to select the features that can be helpful for training a model that aims to detect if a patient suffers from a mental illness. For that, we will use transcriptions extracted from conversational information gathered from people with different mental health conditions to create a data set. After the feature selection, the constructed data set will be fed to supervised learning algorithms and their performance will be evaluated. Concretely we will work with random forests, neural networks and BERT.es_ES
dc.description.sponsorshipThis work was partially funded by the European Commission, grant number 823907 and the Spanish Ministry of Science under grant TIN2017-85854-C4-3- R.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/823907es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/TIN2017-85854-C4-3- Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectmental healthes_ES
dc.subjectfeature selectiones_ES
dc.subjectmachine Learninges_ES
dc.titleMultimodal feature evaluation and fusion for emotional well-being monitorizationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder© 2022 Springer Nature Switzerland AGes_ES
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-04881-4_20es_ES
dc.identifier.doi10.1007/978-3-031-04881-4_20
dc.contributor.funderEuropean Commission
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record