Show simple item record

dc.contributor.authorIyengar, Pranit
dc.contributor.authorKolb, Manuel J.
dc.contributor.authorPankhurst, James R.
dc.contributor.authorCalle Vallejo, Federico
dc.contributor.authorBuonsanti, Raffaella
dc.date.accessioned2023-03-22T16:55:18Z
dc.date.available2023-03-22T16:55:18Z
dc.date.issued2021-10-18
dc.identifier.citationACS Catalysis 11(21) : 13330-13336 (2021)es_ES
dc.identifier.issn2155-5435
dc.identifier.urihttp://hdl.handle.net/10810/60455
dc.description.abstractIn the CO2 reduction reaction, the design of electrocatalysts that selectively promote alcohols over hydrocarbons (e.g., ethanol over ethylene) hinges on the understanding of the pathways and specific sites that forms alcohols. Herein, theoretical considerations guide state-of-the-art synthesis of well-defined catalysts to show that higher selectivity toward ethanol is achieved on Cu(110) edge sites compared to Cu(100) terraces. Specifically, we study the catalytic behavior of Cu nano-cubes (Cucub) of different sizes in the framework of tandem catalysis with CO-producing Ag nanospheres. We predict and experimentally find that the smaller Cucub possess higher selectivity for ethanol in view of their larger edge-to-faces ratio and of the fact that ethylene is produced at terraces while ethanol is selectively produced at step edges. These results call for synthetic developments toward Cu nanostructures exposing only edge sites, such as hollow cubic nanocages, to further increase ethanol selectivity. More generally, this study encourages the application of well-defined nano catalysts as a bridge between theory and experiments in electrocatalysis.es_ES
dc.description.sponsorshipThis work was financially supported by Gaznat S.A. J.R.P. acknowledges the H2020 Marie Curie Individual Fellowship grant SURFCAT with Agreement No. 837378. This publication was created as part of NCCR Catalysis, a National Centre of Competence in Research funded by the Swiss National Science Foundation. The theoretical effort was supported by Spanish MICIUN’s RTI2018-095460–B-I00, Ramón y Cajal RYC-2015-18996, and María de Maeztu MDM-2017-0767 Grants, and partly by Generalitat de Catalunya via 2017SGR13. M.J.K. and F.C.V. are thankful to Red Española de Supercomputación (RES) for supercomputing time at SCAYLE (Projects QS-2019-3-0018, QS-2019-2-0023, and QCM-2019-1-0034). The use of supercomputing facilities at SURFsara was sponsored by NWO Physical Sciences.es_ES
dc.language.isoenges_ES
dc.publisherACSes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/837378es_ES
dc.relationinfo:eu-repo/grantAgreement/MICIUN/RTI2018-095460–B-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectCO2 electroreductiones_ES
dc.subjecttheory-drivenes_ES
dc.subjectcopper cubeses_ES
dc.subjectsilveres_ES
dc.subjecttandemes_ES
dc.subjectethanoles_ES
dc.titleTheory-guided enhancement of CO2 reduction to ethanol on Ag-Cu tandem catalysts via particle-size effectses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2021, American Chemical Societyes_ES
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acscatal.1c03717es_ES
dc.identifier.doi10.1021/acscatal.1c03717
dc.contributor.funderEuropean Commission
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record