Show simple item record

dc.contributor.authorBoukha, Zouhair
dc.contributor.authorChoya Atencia, Andoni ORCID
dc.contributor.authorCortés-Reyes, Marina
dc.contributor.authorDe Rivas Martín, Beatriz
dc.contributor.authorAlemany, Luis J.
dc.contributor.authorGonzález Velasco, Juan Ramón
dc.contributor.authorGutiérrez Ortiz, José Ignacio ORCID
dc.contributor.authorLópez Fonseca, Rubén ORCID
dc.date.accessioned2024-01-12T12:11:53Z
dc.date.available2024-01-12T12:11:53Z
dc.date.issued2020-06-26
dc.identifier.citationApplied Catalysis B: Environmental 277 : (2020) // Art. Id. 19280es_ES
dc.identifier.issn0926-3373
dc.identifier.issn1873-3883
dc.identifier.urihttp://hdl.handle.net/10810/63911
dc.description.abstractIn the present study, a series of four hydroxyapatite (HAP) supported palladium samples, with a Pd loading close to 0.5 %, obtained through their calcination at 773, 873, 973, or 1073 K has been investigated. These samples have been characterized using a wide battery of complementary techniques. From these studies, it was found that the rise of the calcination temperature induces a progressive dehydroxylation of the support and a structure evolution of the species containing Pd 2+ , from tetrahedral (Td) to square planar geometry (D 4h ). Moreover, this enhances markedly the metal-support interactions. For instance, at the highest temperature (1073 K), Pd particles were found encapsulated by a thin support layer. Consequently, two distinct reducible species have been identified; one of them manifests SMSI. This increase in the Pd-HAP interaction strength seems to (i) expand the HAP lattice, (ii) change the Pd 2+ coordination from Td to D 4h geometry, (iii) promote PdO reduction and (iv) suppress CO chemisorption. These entire properties do compensate the poor textural properties and benefit the efficiency and stability of the Pd active phase in methane oxidation reaction.es_ES
dc.description.sponsorshipMinisterio de Economía y Competitividad (CTQ2015-73219-JIN (AEI/FEDER/UE) and CTQ2016-80253-R (AEI/FEDER/UE)) // Basque Government (GIC IT-1297-19) // University of the Basque Country UPV/EHU (PIF15/335)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTQ2015-73219-JINes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTQ2016-80253-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectpalladium-supported hydroxyapatitees_ES
dc.subjectcalcination temperaturees_ES
dc.subjectstructural evolutiones_ES
dc.subjectmethane oxidation reactiones_ES
dc.subjectPd active specieses_ES
dc.subjecteffect of water additiones_ES
dc.titleInfluence of the calcination temperature on the activity of hydroxyapatite-supported palladium catalyst in the methane oxidation reactiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.apcatb.2020.119280es_ES
dc.identifier.doi10.1016/j.apcatb.2020.119280
dc.departamentoesIngeniería químicaes_ES
dc.departamentoeuIngeniaritza kimikoaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/