UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Comunicaciones
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Comunicaciones
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid Deployment of Domain-specific Hyperspectral Image Processors with Application to Autonomous Driving

Thumbnail
View/Open
Postprint (5.861Mb)
Date
2024-01-10
Author
Gutiérrez Zaballa, Jon
Basterrechea Oyarzabal, Koldobika
Echanove Arias, Francisco Javier ORCID
Mata Carballeira, Oscar ORCID
Martínez González, María Victoria
Metadata
Show full item record
  Estadisticas en RECOLECTA
(LA Referencia)

2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS) : 1-6 (2023)
URI
http://hdl.handle.net/10810/72843
Abstract
The article discusses the use of low cost System-On-Module (SOM) platforms for the implementation of efficient hyperspectral imaging (HSI) processors for application in autonomous driving. The work addresses the challenges of shaping and deploying multiple layer fully convolutional networks (FCN) for low-latency, on-board image semantic segmentation using resource- and power-constrained processing devices. The paper describes in detail the steps followed to redesign and customize a successfully trained HSI segmentation lightweight FCN that was previously tested on a high-end heterogeneous multiprocessing system-on-chip (MPSoC) to accommodate it to the constraints imposed by a low-cost SOM. This SOM features a lower-end but much cheaper MPSoC suitable for the deployment of automatic driving systems (ADS). In particular the article reports the data- and hardware-specific quantization techniques utilized to fit the FCN into a commercial fixed-point programmable AI coprocessor IP, and proposes a full customized post-training quantization scheme to reduce computation and storage costs without compromising segmentation accuracy.
Collections
  • Comunicaciones

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka