Show simple item record

dc.contributor.authorGutiérrez Zaballa, Jon
dc.contributor.authorBasterrechea Oyarzabal, Koldobika
dc.contributor.authorEchanove Arias, Francisco Javier ORCID
dc.contributor.authorMata Carballeira, Oscar ORCID
dc.contributor.authorMartínez González, María Victoria
dc.date.accessioned2025-02-19T18:57:51Z
dc.date.available2025-02-19T18:57:51Z
dc.date.issued2024-01-10
dc.identifier.citation2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS) : 1-6 (2023)es_ES
dc.identifier.isbn979-8-3503-2649-9
dc.identifier.urihttp://hdl.handle.net/10810/72843
dc.description.abstractThe article discusses the use of low cost System-On-Module (SOM) platforms for the implementation of efficient hyperspectral imaging (HSI) processors for application in autonomous driving. The work addresses the challenges of shaping and deploying multiple layer fully convolutional networks (FCN) for low-latency, on-board image semantic segmentation using resource- and power-constrained processing devices. The paper describes in detail the steps followed to redesign and customize a successfully trained HSI segmentation lightweight FCN that was previously tested on a high-end heterogeneous multiprocessing system-on-chip (MPSoC) to accommodate it to the constraints imposed by a low-cost SOM. This SOM features a lower-end but much cheaper MPSoC suitable for the deployment of automatic driving systems (ADS). In particular the article reports the data- and hardware-specific quantization techniques utilized to fit the FCN into a commercial fixed-point programmable AI coprocessor IP, and proposes a full customized post-training quantization scheme to reduce computation and storage costs without compromising segmentation accuracy.es_ES
dc.description.sponsorshipThis work was partially supported by the Basque Government under grants PRE 2022 2 0210 and KK-2023/00090, by the Spanish Ministry of Science and Innovation under grant PID2020-115375RB-I00 and by the University of the Basque Country (UPV-EHU) under grant GIU21/007es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relationinfo:eu-repo/grantAgreement/MCIN/PID2020-115375RB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjecthyperspectral imaginges_ES
dc.subjectquantizationes_ES
dc.subjectfully convolutional networkses_ES
dc.subjectautonomous driving systemses_ES
dc.titleRapid Deployment of Domain-specific Hyperspectral Image Processors with Application to Autonomous Drivinges_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder© 2023 IEEEes_ES
dc.relation.publisherversionhttps://ieeexplore.ieee.org/abstract/document/10382745es_ES
dc.relation.publisherversionhttps://doi.org/10.1109/ICECS58634.2023.10382745es_ES
dc.identifier.doi10.1109/ICECS58634.2023.10382745
dc.departamentoesTecnología electrónicaes_ES
dc.departamentoeuTeknologia elektronikoaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record