UPV-EHU ADDI
  • Back
    • English
    • Español
    • Euskera
  • Login
  • English 
    • English
    • Español
    • Euskera
  • FAQ
View Item 
  •   Home
  • INVESTIGACIÓN
  • Grupos de Investigación, Institutos y Centros Colaboradores
  • BCBL
  • BCBL-Publications
  • View Item
  •   Home
  • INVESTIGACIÓN
  • Grupos de Investigación, Institutos y Centros Colaboradores
  • BCBL
  • BCBL-Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury

Thumbnail
View/Open
Altered cross-frequency2016.pdf (481.5Kb)
Supplementary Material_cfc_mtbi.pdf (2.070Mb)
figures.zip (1.686Mb)
Date
2016
Author
Antonakakis, Marios
Dimitriadis, Stavros I.
Zervakis, Michalis
Micheloyannis, Sifis
Rezaie, Roozbeh
Babajani-Ferem, Abbas
Zouridakis, George
Papanicolaou, Andrew C.
Metadata
Show full item record
Marios Antonakakis, Stavros I. Dimitriadis, Michalis Zervakis, Sifis Micheloyannis, Roozbeh Rezaie, Abbas Babajani-Feremi, George Zouridakis, Andrew C. Papanicolaou, Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury, International Journal of Psychophysiology, Volume 102, April 2016, Pages 1-11, ISSN 0167-8760, https://doi.org/10.1016/j.ijpsycho.2016.02.002.
URI
http://hdl.handle.net/10810/22738
Abstract
Cross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands. After forming the CFC-based functional connectivity graphs, we employed a tensor representation and tensor subspace analysis to identify the optimal set of features for subject classification as mTBI or control. Our results showed that controls formed a dense network of stronger local and global connections indicating higher functional integration compared to mTBI patients. Furthermore, mTBI patients could be separated from controls with more than 90% classification accuracy. These findings indicate that analysis of brain networks computed from resting-state MEG with PAC and tensorial representation of connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI.
Collections
  • BCBL-Publications

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE