UPV-EHU ADDI
  • Back
    • English
    • Español
    • Euskera
  • Login
  • English 
    • English
    • Español
    • Euskera
  • FAQ
View Item 
  •   Home
  • INVESTIGACIÓN
  • Grupos de Investigación, Institutos y Centros Colaboradores
  • BCBL
  • BCBL-Publications
  • View Item
  •   Home
  • INVESTIGACIÓN
  • Grupos de Investigación, Institutos y Centros Colaboradores
  • BCBL
  • BCBL-Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping

Thumbnail
View/Open
A deconvolution algorithm for multi-echo functional MRI2019.pdf (7.931Mb)
Date
2019
Author
Caballero Gaudes, César
Moia, Stefano
Panwar, Puja
Bandettini, Peter A.
Gonzalez-Castillo, Javier
Metadata
Show full item record
César Caballero-Gaudes, Stefano Moia, Puja Panwar, Peter A. Bandettini, Javier Gonzalez-Castillo, A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping, NeuroImage, Volume 202, 2019, 116081, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2019.116081.
URI
http://hdl.handle.net/10810/38274
Abstract
This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of ⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events.
Collections
  • BCBL-Publications

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
OpenAIRE
OpenAIRE