Show simple item record

dc.contributor.authorZhu, Haijin
dc.contributor.authorGrzelak, Aleksandra
dc.contributor.authorYunis, Ruhamah
dc.contributor.authorMartín Pérez, Jaime ORCID
dc.contributor.authorForsyth, Maria
dc.date.accessioned2021-05-10T08:02:41Z
dc.date.available2021-05-10T08:02:41Z
dc.date.issued2020-12-01
dc.identifier.citationMaterials Advances 1(9) : 3398-3405 (2020)es_ES
dc.identifier.issn2633-5409
dc.identifier.urihttp://hdl.handle.net/10810/51332
dc.description.abstractNanoconfined ions have dramatically different local environments compared to the bulk, which profoundly affects the ion solvation and transport properties taking place in the confined space. Herein, we investigate the rotational and translation mobility of both cation and anions of an OIPC (diethyl)(methyl)(isobutyl)phosphonium hexafluorophosphate) confined in 40 and 180 nm straight-through Al2O3 pores. The results revealed that the nanoconfined OIPC exhibit 44 times higher ionic conductivity than the bulk material at 30 degrees C. This enhancement is attributed to both the reduced tortuosity and the increased population of mobile species. More interestingly, the Al2O3 nanochannels were found to selectively enhance the rotation and translational motion of [P-122i4] cation at elevated temperatures, whilst leaving that of the [PF6] anion less affectedes_ES
dc.description.sponsorshipM. F. thanks the Ikerbasque foundation for a visiting professorial fellowship. The authors acknowledge the Australian Research Council for funding through CE140100012. Deakin University's advanced characterisation facility is acknowledged for use of the NMR instruments, funded through the ARC grant LE110100141. J. M. thanks MCIU for the Ramon y Cajal contract and the grant Ref. PGC2018-094620-A-I00. Authors would like to thank the financial support provided by the IONBIKE RISE project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 823989es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society Of Chemistryes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PGC2018-094620-A-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/823989es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectdiffusion-coefficientes_ES
dc.subjectperfluorosulfonate ionomerses_ES
dc.subjectenhanced conductivityes_ES
dc.subjectself-diffusiones_ES
dc.subjectporous-mediaes_ES
dc.subjectstatees_ES
dc.subjecttransportes_ES
dc.subjectbehaviores_ES
dc.subjectprobees_ES
dc.subjectelectrolyteses_ES
dc.titleDecoupled Ion Mobility in Nano-Confined Ionic Plastic Crystales_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence (CC BY-NC 3.0)es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2020/ma/d0ma00778a#!divAbstractes_ES
dc.identifier.doi10.1039/d0ma00778a
dc.contributor.funderEuropean Commission
dc.departamentoesCiencia y tecnología de polímeroses_ES
dc.departamentoeuPolimeroen zientzia eta teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence (CC BY-NC 3.0)
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence (CC BY-NC 3.0)