UPV-EHU ADDI
  • Back
    • English
    • español
    • Basque
  • Login
  • English 
    • English
    • español
    • Basque
  • FAQ
View Item 
  •   ADDI
  • INVESTIGACIÓN
  • Grupos de Investigación, Institutos y Centros Colaboradores
  • BCBL
  • BCBL-Publications
  • View Item
  •   ADDI
  • INVESTIGACIÓN
  • Grupos de Investigación, Institutos y Centros Colaboradores
  • BCBL
  • BCBL-Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptation patterns and their associations with mismatchnegativity: An electroencephalogram (EEG) study withcontrolled expectations

Thumbnail
View/Open
Adaptation patterns and their2024.pdf (1.262Mb)
Date
2024
Author
Wong, Brian W. L.
Huo, Shuting
Maurer, Urs
Metadata
Show full item record
  Estadisticas en RECOLECTA
(LA Referencia)

Wong, B. W. L., Huo, S., & Maurer, U. (2024). Adaptation patterns and their associations with mismatch negativity: An electroencephalogram (EEG) study with controlled expectations. European Journal of Neuroscience, 60(9), 6312–6329. https://doi.org/10.1111/ejn.16546
European Journal of Neuroscience
URI
http://hdl.handle.net/10810/72836
Abstract
Adaptation refers to the decreased neural response that occurs after repeated exposure to a stimulus. While many electroencephalogram (EEG) studies have investigated adaptation by using either single or multiple repetitions, the adaptation patterns under controlled expectations manifested in the two main auditory components, N1 and P2, are still largely unknown. Additionally, although multiple repetitions are commonly used in mismatch negativity (MMN) experiments, it is unclear how adaptation at different time windows contributes to this phenomenon. In this study, we conducted an EEG experiment with 37 healthy adults using a random stimulus arrangement and extended tone sequences to control expectations. We tracked the amplitudes of the N1 and P2 components across the first 10 tones to examine adaptation patterns. Our findings revealed an L-shaped adaptation pattern characterised by a significant decrease in N1 amplitude after the first repetition (N1 initial adaptation), followed by a continuous, linear increase in P2 amplitude after the first repetition (P2 subsequent adaptation), possibly indicating model adjustment. Regression analysis demonstrated that the peak amplitudes of both the N1 initial adaptation and the P2 subsequent adaptation significantly accounted for variance in MMN amplitude. These results suggest distinct adaptation patterns for multiple repetitions across different components and indicate that the MMN reflects a combination of two processes: the initial adaptation in the N1 and a continuous model adjustment effect in the P2. Understanding these processes separately could have implications for models of cognitive processing and clinical disorders.
Collections
  • BCBL-Publications

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Browse

All of ADDICommunities & CollectionsBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)SubjectsThis CollectionBy Issue DateAuthorsTitlesDepartamentos (cas.)Departamentos (eus.)Subjects

My Account

Login

Statistics

View Usage Statistics

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka